If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+96x-576=0
a = 5; b = 96; c = -576;
Δ = b2-4ac
Δ = 962-4·5·(-576)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-144}{2*5}=\frac{-240}{10} =-24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+144}{2*5}=\frac{48}{10} =4+4/5 $
| 11+2x=-8x+11 | | 4(7-8a)=28+4a | | 16t^2+(3)=0 | | 16t^2+3=0 | | 2250^2=2000^2+b^2 | | 9y+5-8=30 | | X(2x-7)(3x+1)=(2x-5)(3x+2) | | T(x)=42-29x | | 4^(x-2)=7 | | 5d-2d+2=11 | | 6x−2=14+2x | | 3x-19=4x+6 | | 4/1.2=9/x | | 8x=77−3x | | 8(8t+1)-12=t-(t+3) | | t+(t+6)+(t-2)=31 | | 4x=60−2x | | 5^2x-7=125 | | 12(x+2)=8(13-x) | | -3x-12=-5x-24 | | -2x-2=-5x+22 | | 4x^2=2x^2+5x+3 | | 5w/3=15 | | 18=3/5y | | x=9-3/3*5+10 | | 7u/2=56 | | 9/a=12 | | 6+7y=5+12y | | -3.1x=-12.4 | | 2/9(d)=10 | | 1/2x+6=19 | | 10-8y=7+11y |